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Abstract

Information about community structure can be useful in a va-
riety of mobile web applications. For instance, it has been
shown that community-based methods can be more effective
than alternatives for routing messages in delay-tolerant net-
works. In this paper we present initial research that shows that
information on hierarchical structures in communities can
further improve the effectiveness of message routing. This
is interesting because the examination of hierarchical struc-
ture in communities is a little-explored area in social network
analysis.

Introduction

It is well established that knowledge of community struc-
ture is useful for information routing in mobile social net-
works (Nazir, Ma, and Seneviratne 2009; Hui, Crowcroft,
and Yoneki 2010; Vallina-Rodriguez, Hui, and Crowcroft
2009). Information about the community to which the in-
tended recipient of the message belongs provides a larger
target to guide routing. In this paper we explore the idea
that if communities have a hierarchical organization then in-
formation about that hierarchical structure can further help
message routing. We describe an algorithm that exploits
hierarchical community structure for message routing and
present a preliminary evaluation that suggests that this algo-
rithm improves routing efficiency.

While earlier research on community-based methods for
message routing has emphasized distributed rather than cen-
tralized algorithms for community discovery and centrality
(Hui, Crowcroft, and Yoneki 2010; Vallina-Rodriguez, Hui,
and Crowcroft 2009) we feel that a combined approach is
possible, as modern mobile devices have the storage and
processing capacity to run the community finding algo-
rithms that have been considered, if a mechanism for sharing
the network structure exists.

In the next section we provide an overview of existing
research on community-based message routing and present
our algorithm that exploits hierarchical community struc-
ture. Next, we present the algorithm we use to uncover hier-
archical community structure and then present an evaluation
of the performance of that algorithm.
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Message Routing

Research into Delay Tolerant Networking (DTN) protocols
is concerned with the delivery of messages between nodes
within some dynamical, possibly mobile network, in a way
that is tolerant to intermittant connections, disconnections
and failures. This could be within networks of animals, hu-
mans, sensors, satellites or any other system of interacting
devices, objects, beings or things. Such systems are often
characterised by a sparse network of connections between
individuals that change over time. Pocket Switched Net-
works (PSN) (Hui et al. 2005) which are a sub-set of DTNs,
best describe our interests, PSN deal with human networks,
specifically, networks created by mobile devices carried by
people, for example, mobile phones. In this case, humans
interact with each other over time, and their mobile phones
communicate via radio antennae (e.g. Bluetooth or WiFi).

There are a number of approaches to delivering mes-
sages within DTNs; flooding based approaches, flood the
network with copies of messages between any nodes that
meet; epidemic-like protocols behave similarly, for example
Epidemic Routing (Vahdat and Becker 2000) transmits mes-
sages to other nodes with some probability, but limits mes-
sages by hop count to reduce overhead. These are perhaps
the most effective, but the large number of message copies
generated and sent, mean a large overhead in message trans-
mission between nodes. More conservative approaches in-
clude Spray and Wait (Spyropoulos, Psounis, and Raghaven-
dra 2005), where a limited number of messages are dis-
tributed before a phase where nodes keep the messages until
meeting the destination. Other approaches involve probab-
listic, or opportunistic mechanisms to predict future inter-
actions, such as PROPHET (Lindgren, Doria, and Schelén
2003) and Context-Aware Adaptive Routing (CAR) (Mu-
solesi and Mascolo 2009) which use knowledge about pre-
vious contacts to fuel predictions about co-locations which
are used to decide next-hop routes.

The measures for success of a DTN algorithm can be en-
capsulated by three metrics; most often the goal is to have
high delivery ratio, a low overhead cost and low delivery
latency (Crowcroft et al. 2008).

Community-Based Routing

The BUBBLERap (Hui, Crowcroft, and Yoneki 2010) pro-
tocol uses community structure to inform routing decisions,



On node N connected with encountered node P
for all messages M held by N for destination D do
Identify bridging community BC' {the smallest com-
munity containing N and D}
if P == D then
P+ M
else if P shares a community with D that is smaller
than BC' then
P+ M
else if P has a higher local rank for BC' than N then
P« M
else
N keeps M
end if
end for

Figure 1: BubbleH Algorithm

it uses K-CLIQUE clustering (Palla et al. 2005) to gener-
ate overlapping community structure from a graph formed
from contact between nodes. An edge between two nodes is
formed when a contact occurs, and the edge weight is in-
cremented with the duration of the contact every subsequent
meeting. Each node is given a global rank, and a rank within
each community to which they belong. Ranks are based on
their betweeness centrality globally and within each com-
munity. To take into account the dynamic nature of contact
networks, the authors also threshold edges based on the con-
nected time between nodes, edges where nodes have been
connected for less than 4.5 days are removed before the K-
CLIQUE algorithm is applied.

Incorporating Community Hierarchy in Routing

Here we present the algorithm that exploits community hi-
erarchical structure, which we call BubbleH. As with the
BUBBLERap algorithm, we calculate local rankings based
on centrality, however, we do not use the global rank.
Instead, we use the hierarchy generated by Hierarchical
Greedy Clique Expansion (H-GCE) to drive the mobility of
messages within the network. When a node encounters an-
other, it considers whether to pass the message on based on
how close the other node is in the network structure to the
destination node. The algorithm is shown in Figure 1.

We define a bridging community as the smallest commu-
nity that contains the node in question, and the recipient, or
destination node. To find the smallest community between
two nodes, we find all of the comminties that the nodes
share. Then, we find the shared community that is lowest in
the hierarchical structure. If there are multiple communities
at this lowest depth, the community with the lowest mem-
bership count is chosen. In the case where we still have mul-
tiple candidate communities, we choose the last candidate
community found by the H-GCE algorithm. Alternatively,
at this point we could also apply further rules for choosing
the community, for example, summing the weight of edges
and using the highest score.

In the simplified example in Figure 2, to get a message
from C to P, anode must determine whether an encountered
node is closer to P than itself, if it encounters M it will cal-
culate the smallest bridging community as C'1, and compare
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Figure 2: Simple example of hierarachical community struc-
ture showing grouping of nodes A to GG, with communities
identified C'1 to C'7.

it to the smallest community shared by M and P, which is
C6. C6 is smaller than C'1, so it will pass the message to M.

The intended effect of BubbleH, is that we continually
narrow down the scope of the message, so that it reaches
the smallest community or target possible. We believe that
in doing so, a message has a better chance of reaching the
destination node than by considering communities of any
size and structure for message passing.

Hierarchical Community Finding

It has recently been observed that mobile phone users typ-
ically belong to several network communities, so a suitable
community finding algorithm should be capable of detect-
ing overlapping communities. For this reason, we develop
H-GCE, a hierarchical community detection method based
on GCE (Greedy Clique Expansion), which has been shown
to perform well in networks with high levels of community
overlap (Lee et al. 2010).

Before describing the algorithm, we define some terms.
Let a community consist of a set of nodes. We will call a
pair of communities C and C’ near duplicates if the distance
between them §(C, C") is less than the value of ¢, where
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Given a set of communities, we can merge two communities
by removing them from the set and adding their union.

H-GCE consists of two phases. The first involves identi-
fying a set of seeds and expanding these such that a dendro-
gram is formed. To find seeds, we first enumerate the set of
all cliques in the network, and then remove all cliques which
have a larger near-duplicate, as in GCE. Thus, each seed is
a clique that is not a near duplicate of a clique of equal or
greater size. We then select all seeds of the smallest size and
expand them in parallel by one node by greedily optimizing
a local fitness function—see (Lee et al. 2010) for details. Af-
ter each expansion step, we merge any pair of communities
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which have become near duplicates. This two-step process
(expanding all smallest communities by one node, merging
any near duplicate pairs) is repeated until each seed has ex-
panded to contain the entire graph. At some point in this
phase all seeds will have been merged into one community.
Thus, the expansion process produces a singly-rooted tree,
or dendrogram, with seeds at the leaves and one big com-
munity containing all nodes at the root.

In this dendrogram, the path from a leaf (the seed) to the
root is the history of nodes that are added either by greedy
expansion or by merging. Thus, each point in this path can
be thought of as representing a community containing the
node added at that step in the expansion and all nodes added
previously.

There is a problem with the dendrogram produced in
phase one: even if a graph contains no community structure
or only flat community structure, the procedure will return
a dendrogram indicating hierarchical community structure—
however, this dedrogram will be a mere artifact of the algo-
rithm. The second phase of the algorithm determines which
points in the dendrogram produced in the first phase repre-
sent significant community structure. The fundamental idea
behind our approach is that if community structure is sig-
nificant, then it will be robust against small perturbations in
the graph, whereas insignificant communities will not dis-
play such stability. In other words, significant communities
will be recoverable even if some noise is added to the graph;
this idea has been previously developed in (Karrer, Levina,
and Newman 2008; Rosvall and Bergstrom 2008). This and
other approaches to measuring the significance of communi-
ties are outlined in Fortunato’s review of community finding
methods (Fortunato 2010).

Phase one leaves us with a set of seeds and a dendrogram.
The purpose of phase two is to solve the problem just identi-
fiend by labeling the points in this dendrogram as significant
or insignificant. Phase two consists of two steps: the first
step produces several dendrograms as in phase one but on
graphs that have been perturbed by randomly rewiring ten
percent of the edges in such a way that the original degree
distribution is preserved. In our experiments we create 100
dendrograms on graphs perturbed using the method outlined
in (Karrer, Levina, and Newman 2008).

In order to make sure that all graphs contain the same
seeds, we did not rewire edges within seeds. Thus, all of
these dendrograms share the same leaves and root as the one
produced on the unpertubed graph. This means that as one
traverses the path from a particular seed seed s to the root,
the nth step of the traversal will have a corresponding point
in every dendrogram, i.e., the nth parent of seed s.

Because each of these points corresponds to a commu-
nity (as explained above), the distance of two correponding
points in two dendrograms can be calculated using the dis-
tance measure in eq. 2. We call two corresponding points
similar if the communities represented by these points have
a distance less than 0.1.! The second step of phase two com-

' As any two communities approach the size of the entire graph,
they will become similar because they are forced to contain the
same nodes. For this reason, we use a different similarity measure
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Figure 3: Average weekly number of connections for MIT
Reality dataset.

pares each point n in the unperturbed dendrogram with the
corresponding points n” in the perturbed dendrograms. If n
is similar to n’ in at least 90% of the perturbed dendrograms,
then it is labeled as significant. This defininition of signifi-
cance is similar to the one used in (Rosvall and Bergstrom
2008). Finally, H-GCE returns the communities correspond-
ing to all points in the original dendrogram which were la-
beled as significant in phase two.

Preliminary Evaluation

To evaluate the performance of BubbleH, we have used Con-
tactSim, a discrete time event simulator designed specifi-
cally for evaluating DTN routing. ContactSim is capable of
using contact traces either recorded during real-world exper-
iments or generated synthetically.

In addition to BubbleH, we have also implemented sev-
eral other routing algorithms. In order to compare the perfor-
mance of using hierarchical community structure versus the
original K-CLIQUE algorithm, we have implemented BUB-
BLERap. PROPHET, as one of the most well-known and
mature DTN routing protocols, has also been implemented
to provide a standard for comparison. Finally, we also show
results for unlimited flooding of messages across the net-
work: this gives us bounds on maximum delivery ratio and
minimum delivery latency achievable.

In this experiment, we use Bluetooth proximity traces
from the MIT Reality project (Eagle and Pentland 2005) to
drive contact events within the simulator. The authors have
captured communication, proximity, location, and activity
information from 100 subjects at MIT over the course of the
2004-2005 academic year. This data represents over 350,000
hours of continuous data on human behavior.

The MIT Reality dataset has the most number of connec-
tions between between Oct 2004 and Jan 2005 (Figure 3), so

for two communities if they both contain more than half the nodes
in the graph, based on the proportion of nodes that they both ex-
clude, as in
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Figure 4: Simulation results for BUBBLERap, BubbleH,
PROPHET and Flood during the MIT-NOV period.

we chose the period between 10 Nov 2004 and 10 Dec 2004
for community detection and testing, referred to as MIT-
NOV. A weighted edge list is created from MIT-NOV, which
is used by both BUBBLERap’s thresholded K-CLIQUE and
H-GCE to create community structures. For K-CLIQUE the
threshold parameter is 2 days, aggregated over the entire pe-
riod, with K = 3. This creates 6 communities of average
size 3 for KCLIQUE, H-CGE creates 20 communities of av-
erage size 15. At the start of the simulation, each node is
initialized with a message for each other node.

The results in Figure 4 show that in this initial evaluation,
BubbleH achieves a higher delivery ratio than BUBBLERap,
but with a cost that is higher. PROPHET does better still in
this time period, but with a much higher cost associated with
1t.

Not shown is the latency for BUBBLERap, BubbleH,
PROPHET and Flood, the differences between them appear
to be insignificant, apart from Flood, which as expected,
gives the best possible latency, a few points better than the
other candidates.

Conclusion and Future Work

We have presented methods for identifying hierarchical
community structure and routing messages based on this
structure. We have shown that the extra information on hi-
erarchy can improve the efficiency of message delivery. In
future work we plan to perform a more comprehensive eval-
uation to see if these improvements hold up. A key question
for the significance of this work is the extent to which hierar-
chical community structure actually exists in real networks.
This is an under-explored question and we plan to test this
across a range of real social networks.
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